На главную

Решебник методичек Тарга С.М. 1988, 1989, 1983 и 1982 годов по теоретической механике для студентов-заочников.

Статья по теме: Упругости углеродных

Предметная область: материаловедение, композиционные материалы, металлы, стали, покрытия, деформации, обработка

Скачать полный текст

Рис- 13. Соотношение между пределом прочности и модулем упругости углеродных волокон на основе полиакрилнитрильного сырья (/) и вискозного (марки Торнел) волокна (2)[2, С.38]

Рассмотрим влияние условий получения углеродных волокон на их механические свойства. Модуль упругости углеродных волокон возрастает с увеличением температуры прогрева (рис. 2.4) [6] . Прочность при растяжении возрастает с ростом температуры прогрева на стадии карбонизации и снижается на стадии графитизации (рис. 2.5) [6] . Улучшение свойств в процессе карбонизации связывают с ростом ароматических фрагментов, из которых состоят углеродные волокна, с процессом взаимного сшивания этих фрагментов, повышением степени ориентации, усложнением текстуры волокон и другими факторами. Снижение прочности в процессе дальнейшего повышения температуры происходит вследствие порообразования, связанного с выделением газов при реакции неор-[6, С.33]

Рассмотрим влияние условий получения углеродных волокон на их механические свойства. Модуль упругости углеродных волокон возрастает с увеличением температуры прогрева (рис. 2.4) [6] . Прочность при растяжении возрастает с ростом температуры прогрева на стадии карбонизации и снижается на стадии графитизации (рис. 2.5) [6] . Улучшение свойств в процессе карбонизации связывают с ростом ароматических фрагментов, из которых состоят углеродные волокна, с процессом взаимного сшивания этих фрагментов, повышением степени ориентации, усложнением текстуры волокон и другими факторами. Снижение прочности в процессе дальнейшего повышения температуры происходит вследствие порообразования, связанного с выделением газов при реакции неор-[7, С.33]

Хотя наблюдается разброс значений, типичный для углеродных волокон, нужно отметить, что модуль упругости волокон, покрытых карбидом кремния, выше модуля упругости углеродных волокон без покрытия. • - •[4, С.211]

Корреляция между межслоевой прочностью при сдвиге композиционных материалов на основе углеродных волокон и модулем упругости волокон (рис. 2.59) [НО] отражает важнейший недостаток углеродных волокон. В общем случае сдвиговая прочность композиционных материалов снижается с повышением модуля упругости углеродных волокон (степени их графитизации). Это частично обусловлено тем, что поверхность низкомодульных высокопрочных (тип 2) углеродных волокон — открытая и высокопористая, тогда как поверхность высокомодульных (тип 1) волокон — более гладкая. Пористость волокон вызывается выделением летучих продуктов пиролиза, количество которых уменьшается в процессе графитизации с одновременным повышением регулярности кристаллов в результате протекания диффузионных процессов. Другим важным фактором, определяющим сдвиговую прочность этих материалов, является способность полимерного связующего смачивать поверхность углеродных волокон. Низкомодульные углеродные волокна имеют более высокую поверхностную энергию из-за наличия большого количества химически активных групп. Количество этих групп уменьшается при повышении температуры карбонизации, и они практически исчезают при графитизации. Для решения проблемы низкой сдвиговой прочности композиционных материалов на основе углеродных волокон было проведено большое число исследований по повышению адгезионной прочности сцепления волокон с матрицей без снижения прочности волокон. При этом использовали два основных способа — повышение шероховатости поверхности волокон для обеспечения их лучшего механического сцепления с матрицей и создание химических связей между волокнами и матрицей (аналогично применению аппретов в стеклопластиках). Оба эти способа заключались в окислении поверхности углеродных волокон[9, С.122]

Модули упругости и прочности в направлении OCHOBHOFO армирования для углепластиков на основе волокон, вискеризованных из аэрозоля, существенно превышают значения аналогичных характеристик углепластиков на основе волокон, вискеризованных из газовой фазы, что является следствием значительного расхождения в механических свойствах используемой арматуры и ее содержании в композиционных материалах. Модули упругости углеродных волокон, применяемых для вискеризации из аэрозоля, достигают порядка 300 ГПа, прочность при растяжении —1500 МПа, модуль упругости волокон, используемых для вискеризации из газовой фазы,—200 ГПа, прочность 1800 МПа.[1, С.209]

Модули упругости и прочности в направлении OCHOBHOFO армирования для углепластиков на основе волокон, вискеризованных из аэрозоля, существенно превышают значения аналогичных характеристик углепластиков на основе волокон, вискеризованных из газовой фазы, что является следствием значительного расхождения в механических свойствах используемой арматуры и ее содержании в композиционных материалах. Модули упругости углеродных волокон, применяемых для вискеризации из аэрозоля, достигают порядка 300 ГПа, прочность при растяжении —1500 МПа, модуль упругости волокон, используемых для вискеризации из газовой фазы,—200 ГПа, прочность 1800 МПа.[3, С.209]

Диапазоны значений прочности и модуля упругости углеродных волокон на основе ПАН и пеков представлены на рис. 1.5. [8].[5, С.13]

Рис. 1.6. Константы упругости графита [9] и влияние степени ориентации атомных слоев на модуль упругости углеродных волокон: а —- графитовые волокна (па осноие мезофазного пека); б — углеродные волокна (на основе мезофазното пека); в — высокотемпературные ПАН-углеродные волокна; t — низкотемпературные ПАН-углерод-ные волокна[5, С.15]

В зависимости от типа сырья для производства углеродных волокон, режимов и условий их термообработки они имеют различные прочность, модуль упругости и другие характеристики. С учетом значительного многообразия различающихся по свойствам углеродных волокон в работе [2] предложено обозначать буквами UXYV соответственно режим термообработки, тип исходного сырья, прочность и модуль упругости углеродных волокон. Буква U (вместо U может стоять С или G) обозначает степень графитизации (в соответствии с режимом термообработки), причем значок С соответствует углеродным волокнам, a G — графитовым. Буква X характеризует прочность при растяжении (в мегапаска-лях), которая подразделяется на 1500 единиц. БукваY характеризует модуль упругости при растяжении ( в гигапаскалях), который подразделяется на 150 единиц, а V характеризует тип исходного сырья для получения углеродных волокон: индекс R соответствует вискозе, А — по-лиакрилонитрилу, Р - пеку.[6, С.30]

В зависимости от типа сырья для производства углеродных волокон, режимов и условий их термообработки они имеют различные прочность, модуль упругости и другие характеристики. С учетом значительного многообразия различающихся по свойствам углеродных волокон в работе [2] предложено обозначать буквами UXYV соответственно режим термообработки, тип исходного сырья, прочность и модуль упругости углеродных волокон. Буква U (вместо U может стоять С или G) обозначает степень графитизации (в соответствии с режимом термообработки), причем значок С соответствует углеродным волокнам, a G - графитовым. Буква X характеризует прочность при растяжении (в мегапаска-лях), которая подразделяется на 1500 единиц. БукваY характеризует модуль упругости при растяжении ( в гигапаскалях), который подразделяется на 150 единиц, а V характеризует тип исходного сырья для получения углеродных волокон: индекс R соответствует вискозе, А — по-лиакрилонитрилу, Р - пеку.[7, С.30]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



В ПОМОЩЬ ВСЕМ СТУДЕНТАМ!!!
Задачи по теоретической механике из сборников Яблонского, Мещерского, Тарга С.М., Кепе. Решение любых задач по материаловедению, термодинамике, метрологии, термеху, химии, высшей математике, строймеху, сопромату, электротехнике, ТОЭ, физике и другим предметам на заказ.

СПИСОК ЛИТЕРАТУРЫ

1. Тарнопольский Ю.М. Пространственно-армированные композиционные материалы, 1987, 224 с.
2. Портной К.И. Структура и свойства композиционных материалов, 1979, 256 с.
3. Тарнопольский Ю.М. Пространственно-армированные композиционные материалы. Справочник, 1987, 224 с.
4. Лахтин Ю.М. Новые стали и сплавы в машиностроении, 1976, 224 с.
5. Шешин Е.П. Структура поверхности и автоэмиссионные свойства углеродных материалов, 2001, 288 с.
6. Симамура С.N. Углеродные волокна, 1987, 304 с.
7. Симамура С.N. Углеродные волокна, 1987, 304 с.
8. Фетисов Г.П. Материаловедение и технология металлов, 2001, 640 с.
9. Бабаевского П.Г. Промышленные полимерные композиционные материалы, 1980, 472 с.
10. Браутман Л.N. Композиционные материалы с металлической матрицей Т4, 1978, 504 с.
11. Арзамасов Б.Н. Материаловедение, 2002, 657 с.

На главную