На главную

Решебник методичек Тарга С.М. 1988, 1989, 1983 и 1982 годов по теоретической механике для студентов-заочников.

Статья по теме: Упругости коэффициента

Предметная область: материаловедение, композиционные материалы, металлы, стали, покрытия, деформации, обработка

Скачать полный текст

В большинстве случаев спеченные порошковые металлы даже после доводки их дополнительной механической и термической обработкой до компактного, почти беспористого состояния имеют несколько большее количество дефектов кристаллической решетки, межкристаллических включений, высокое содержание окислов и газов и более мелкозернистую структуру, большее количество пустых мест в решетке, чем соответствующие литые, обработанные давлением и отожженные металлы. В связи с этим компактные металлокерамические металлы обычно имеют при комнатной температуре несколько более высокие показатели прочности (авр, <*т, ояц, ау, ава, аесж) и твердости, чем соответствующие литые металлы. По этим же причинам значения показателей деформируемости (б, т]), стрелы прогиба) и ударной вязкости у компактных металло-керамических материалов несколько»ниже, чем у литых. Различие механических свойств металлокерамических и литых материалов при высоких температурах, в частности длительной прочности, зависит в первую очередь от природы соответствующих окислов (которые в металлокерамических материалах содержатся в большом количестве). В соответствии с этим металлокерамический алюминий САП, содержащий окислы алюминия, более жаропрочные, чем основной металл, имеет более высокую жаропрочность, чем литые сплавы алюминия, а металлокерамический молибден с летучими окислами — наоборот, меньшую жаропрочность, чем молибден, полученный дуговым плавлением. Последние исследования показывают, что более мелкозернистая структура металлокерамических материалов повышает их термостойкость и сопротивление вредному действию ядерного облучения [22]. Значения модулей упругости, коэффициента расширения, теплоемкости, электропроводности, а также усталостной прочности у компактных металлокерамических металлов заметно не отличаются от соответствующих значений у литых металлов. Вредное действие повышенного содержания дефектов, окислов и газов на пластичность и ударную вязкость компактных порошковых металлов увеличивается со снижением пластичности материала. Например, компактный металлокерамический титан, а также пластичные малолегнрованные сплавы титана имеют приблизительно такую же пластичность и ударную вязкость, как и материалы, полученные дуговым плавлением. В то же время метал-локерампческие сплавы титана с высокой твердостью и большим содержанием легирующих компонентов имеют значительно меньшую пластичность и ударную вязкость, чем сплавы, полученные дуговым плавлением.[1, С.571]

При выборе материалов конструктор должен иметь в руках выбор так называемых расчетных допущений. Ими являются показатели свойств при растяжении, сжатии и сдвиге монослоя или слоистого материала, из которого изготовляется элемент конструкции. Монослои анизотропны, и поэтому конструктор не обнаружит в справочнике единственных значений прочности, модуля упругости, коэффициента Пуассона и др., как в случае металлов. Вместо этого используются серии графиков, которые иллюстрируют изменение прочности и модуля в зависимости от ориентации волокна. Теоретические значения этих показателей могут быть получены на основании законов микромеханики, однако практически реализуемые должны определяться экспериментально. Эти экспериментальные данные и последующий анализ обеспечивают необхо-[2, С.58]

В большинстве случаев спеченные порошковые металлы даже после доводки их дополнительной механической и термической обработкой до компактного, почти беспористого состояния имеют несколько большее количество дефектов кристаллической решетки, межкристаллических включений, высокое содержание окислов и газов и более мелкозернистую структуру, большее количество пустых мест в решетке, чем соответствующие литые, обработанные давлением и отожженные металлы. В связи с этим компактные металлокерамические металлы обычно имеют при комнатной температуре несколько более высокие показатели прочности (авр, <*т, ояц, ау, ава, аесж) и твердости, чем соответствующие литые металлы. По этим же причинам значения показателей деформируемости (б, т]), стрелы прогиба) и ударной вязкости у компактных металло-керамических материалов несколько»ниже, чем у литых. Различие механических свойств металлокерамических и литых материалов при высоких температурах, в частности длительной прочности, зависит в первую очередь от природы соответствующих окислов (которые в металлокерамических материалах содержатся в большом количестве). В соответствии с этим металлокерамический алюминий САП, содержащий окислы алюминия, более жаропрочные, чем основной металл, имеет более высокую жаропрочность, чем литые сплавы алюминия, а металлокерамический молибден с летучими окислами — наоборот, меньшую жаропрочность, чем молибден, полученный дуговым плавлением. Последние исследования показывают, что более мелкозернистая структура металлокерамических материалов повышает их термостойкость и сопротивление вредному действию ядерного облучения [22]. Значения модулей упругости, коэффициента расширения, теплоемкости, электропроводности, а также усталостной прочности у компактных металлокерамических металлов заметно не отличаются от соответствующих значений у литых металлов. Вредное действие повышенного содержания дефектов, окислов и газов на пластичность и ударную вязкость компактных порошковых металлов увеличивается со снижением пластичности материала. Например, компактный металлокерамический титан, а также пластичные малолегнрованные сплавы титана имеют приблизительно такую же пластичность и ударную вязкость, как и материалы, полученные дуговым плавлением. В то же время метал-локерампческие сплавы титана с высокой твердостью и большим содержанием легирующих компонентов имеют значительно меньшую пластичность и ударную вязкость, чем сплавы, полученные дуговым плавлением.[3, С.571]

Композиционные материалы отличаются от обычных сплавов более высокими значениями временного сопротивления и предела выносливости (на 50—100 %), модуля упругости, коэффициента жесткости (Е/у) и пониженной склонностью к трещинообразова-нию. Применение композиционных материалов повышает жесткость конструкции при одновременном снижении ее металлоемкости .[4, С.423]

Расчет напряжения по сечению формы является сложной задачей. Степень трудности при анализе процесса дополнительно увеличивается из-за влияния таких существенных факторов, как изменение пределов прочности и текучести, модуля упругости, коэффициента Пуассона, поглощения или отдачи тепла. Кроме того, сечение формы подвергается циклическим изменениям температуры.[6, С.16]

Таким образом, для решения рассматриваемого класса задач необходимо задать лишь некоторую числовую последовательность, характеризующую: геометрию срединной поверхности; разбиение оболочки корпуса на участки (конические, цилиндрические, пластины) в зависимости от геометрии срединной поверхности и характера изменения толщины; номер гармоники; разбиение каждого участка на элементы; значения толщины, модуля упругости, коэффициента Пуассона, дав-[7, С.77]

Одной из первых работ в этой области, с которой авторы настоящей главы хорошо знакомы, является работа Тернера. В ней использован метод равенства деформаций для расчета коэффициентов термического расширения смесей, исходя из плотности, модуля упругости, коэффициента термического расширения и массового соотношения составляющих компонентов. Первоначально полученная формула видоизменена с учетом объемных долей фаз и приведена в табл. 6.5 под номером (6.17). Анализ этой формулы показывает, что при одинаковом объемном модуле упругости фаз, она сводится к формуле простого правила смеси. Если сделанные[8, С.258]

В силу принятых допущений исходные соотношения уточненной теории оболочек существенно упрощаются. Но вначале введем некоторые обозначения: Ek, Vk, GK — соответственно модуль упругости, коэффициента Пуассона, модуль поперечного сдвига k-ro слоя оболочки; безразмерные жесткостные характеристики k-то слоя[9, С.52]

ные материалы). Эти материалы отличаются от обычных сплавов большими значениями временного сопротивления и предела выносливости (на 50...100%), модуля упругости, коэффициента жесткости (Е/р) и пониженной склонностью к трещинообразованию и высокой жаропрочностью.[5, С.233]

пористости, предела текучести материала частиц, предела прочности, коэффициента трения, модуля упругости, коэффициента Пуассона, геометрических размеров прессовки, хода пуансона в процессе прессования, модуля упругости материала порошка.[10, С.51]

1 Увеличение измеряемых деформаций с помощью пневматической и механической аистам .может быть доведено до 200000 раз. Это дает возможность применять пневматические тензометры даже щщ определении упругих постоянных материала (модуля упругости, коэффициента Пуассона) с точностью измерений, например, ino стали до 0,05 кг/мм2.[11, С.13]

Полный текст статьи здесь



В ПОМОЩЬ ВСЕМ СТУДЕНТАМ!!!
Задачи по теоретической механике из сборников Яблонского, Мещерского, Тарга С.М., Кепе. Решение любых задач по материаловедению, термодинамике, метрологии, термеху, химии, высшей математике, строймеху, сопромату, электротехнике, ТОЭ, физике и другим предметам на заказ.

СПИСОК ЛИТЕРАТУРЫ

1. Бочвар М.А. Справочник по машиностроительным материалам т.2, 1959, 640 с.
2. Браутман Л.N. Применение композиционных материалов в технике Том 3, 1978, 512 с.
3. ПогодинАлексеев Г.И. Справочник по машиностроительным материалам Том 2 Цветные металлы и их сплавы, 1959, 640 с.
4. Лахтин Ю.М. Материаловедение Учебник для высших технических учебных заведений, 1990, 528 с.
5. Ржевская С.В. Материаловедение Учебник, 2004, 422 с.
6. Веронский А.N. Термическая усталость металлов, 1986, 129 с.
7. Гусенков А.П. Длительная и неизотермическая малоцикловая прочность элементов конструкций, 1988, 263 с.
8. Бабаевского П.Г. Промышленные полимерные композиционные материалы, 1980, 472 с.
9. Григолюк Э.И. Многослойные армированные оболочки, 1988, 288 с.
10. Курилов П.Г. Производство конструкционных изделий из порошков на основе железа, 1992, 130 с.
11. Яковлев В.Ф. Измерения деформаций и напряжений деталей машин, 1983, 192 с.

На главную