На главную

Решебник методичек Тарга С.М. 1988, 1989, 1983 и 1982 годов по теоретической механике для студентов-заочников.

Статья по теме: Уплотнительных устройств

Предметная область: материаловедение, композиционные материалы, металлы, стали, покрытия, деформации, обработка

Скачать полный текст

Надежность работы арматуры определяется герметичностью ее уплотнительных устройств. Кроме того, надежность работы арматуры высокого давления будет зависеть в первую очередь от рабочей темпераруры и давления рабочей среды, качества материала, совершенства конструкции деталей, качества, изготовления и качества эксплуатации и ремонта.[1, С.70]

В настоящее время разработаны конструкции многих контактных металлопластмассовых уплотнительных устройств. Эти устройства обычно состоят из армированного пластмассового клапана и металлического седла.[1, С.6]

Вниманию читателя предлагается книга, посвященная отдельным аспектам проблемы обеспечения надежности уплотнительных устройств и направляющих втулок из полимерных материалов. В первой главе даются общие сведения о работе уплотняющей арматуры и силовых цилиндров пневмогидросистем. Изложены условия работы этих устройств на транспортных агрегатах. Во второй главе кратко и популярно излагаются сведения о полимерных материалах и возможности их применения для гидравлических и пневматических систем. Последняя глава посвящена расчету, проектированию и выбору конструктивных параметров некоторых видов уплотнений и направляющих втулок из полимерных материалов.[1, С.4]

Антифрикционные углеродные материалы предназначены для работы без смазки в качестве подшипниковых опор, уплотнительных устройств, поршневых колец и других деталей в парах трения в интервале температур —200-н -г- +2000° С при скоростях скольжения до 100 м/с и в агрессивных средах. Их свойства (табл. 7) ухудшаются в вакууме и среде осушенных газов. Разновидности этих материалов приведены далее.[2, С.218]

Углеродные (углеграфитные) антифрикционные материалы предназначены для изготовления деталей (подшипников скольжения, уплотнительных устройств, поршневых колец и др.), работающих в узлах трения без смазочного материала при температурах от -200 до +2000 °С и скоростях скольжения до 100 м/с, а также в агрессивных средах. Свойства их зависят от химического состава и способа получения: плотность 1,4-3,2 г/см3, предел прочности при сжатии 60-270 МПа (600-2700 кгс/см2), при изгибе — 22-120 МПа (220-1200 кгс/см2), модуль упругости при сжатии 600-1700 МПа (6000-17 000 кгс/см2), твердость по Шору 42-75, допустимая рабочая температура в окислительной среде 180-450 °С, в восстановительной и нейтральной средах — 200-1500 °С. При работе в вакууме и среде осушенных газов свойства этих материалов ухудшаются.[4, С.256]

Полимеры в зависимости от физико-механических характеристик могут служить конструкционным материалом при проектировании гидравлических и пневматических систем. Однако в пневмогидравлических системах высокого давления в качестве уплотнительных устройств рекомендуется применять полиэтилен, капролон, полиамид П-68, полиформальдегид, полипропилен, фторопласт-4, ленту ФУМ, некоторые виды герметиков.[1, С.44]

В отличие от предыдущих глав, в которых изложены общие принципы проектирования расчета на прочность и выбора конструктивных параметров пластмассовых деталей, в настоящей главе рассмотрены конкретные примеры применения и расчета пластмассовых деталей и рабочих органов машины, в том числе: разъемных и неразъемных соединений, передач, опор, деталей трубопроводной арматуры и уплотнительных устройств. Разумеется, нет возможности охватить здесь проблему во всей ее широте, предполагается, что читатель, овладевший материалом третьей главы, сможет самостоятельно решать многие задачи по конструированию и расчету пластмассовых деталей. Здесь же уделено внимание главным образом таким деталям, которые чаще всего изготовляют из пластмасс, и деталям, конструирование которых связано с особыми моментами. Ни в коем случае нельзя думать, что конструкционные пластмассы применяют только для тех деталей машин, о которых говорится в настоящей главе.[3, С.143]

Эксплуатировать пневмогидравлические системы приходится в условиях большой запыленности, значительной влажности, резкого изменения температур атмосферы, ограниченного рабочего пространства и неравномерных нагрузок на исполнительные органы машины. Все это предъявляет повышенные требования как к конструкции гидропневмопривода в целом, так и к их элементам, например уплотнениям. Нормальная работа уплотнений зависит прежде всего от состояния рабочей жидкости, которая одновременно является носителем энергии и смазкой. При этом уплотнения подвергаются воздействию переменных давлений, скоростей и температур. Скорость движения жидкости в отдельных элементах гидропривода достигает 80 м/сек, а обычный рабочий интервал температур колеблется в пределах 283—353 К. В отличие от гидропривода трущиеся поверхности уплотнительных устройств пневмоагрегатов необходимо специально смазывать. Так как в процессе расширения воздуха его температура значительно понижается, то для смазКи необходимо применять масло с низкой температурой застывания (не выше 268—263 К). Таким маслом является масло индустриальное 30. Так как полного осушения воздуха в пневмоприводе добиться нельзя, то охлаждение иногда приводит к обмерзанию пневматических агрегатов, особенно интенсивному при дросселировании воздуха в системах высокого давления. Эти режимы могут допускаться только кратковременно.[1, С.34]

Одной из проблем современного турбостроения является создание уплотнительных устройств, способных работать в условиях высоких температур, больших давлений и скоростей газового и парового потока.[5, С.54]

Для повышения экономичности и надежности паровых и газовых турбин применяются различные типы уплотнительных устройств — концевые, диафрагменные и радиальные.[5, С.54]

с водой, маслом АМГ-10 и другими маслами при нормальной температуре. В расчетах уплотнительных устройств для агрегатов, работающих с рабочей средой, имеющей температуру 223 К и ниже, необходимо принимать верхние значения этих коэффициентов. Данное правило выбора коэффициентов не зависит от величины рабочего давления.[1, С.77]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



В ПОМОЩЬ ВСЕМ СТУДЕНТАМ!!!
Задачи по теоретической механике из сборников Яблонского, Мещерского, Тарга С.М., Кепе. Решение любых задач по материаловедению, термодинамике, метрологии, термеху, химии, высшей математике, строймеху, сопромату, электротехнике, ТОЭ, физике и другим предметам на заказ.

СПИСОК ЛИТЕРАТУРЫ

1. Вуколов В.М. Детали из пластмасс в пневмогидравлических системах, 1974, 144 с.
2. Раскатов В.М. Машиностроительные материалы Краткий справочник Изд.3, 1980, 512 с.
3. Хуго И.N. Конструкционные пластмассы, 1969, 336 с.
4. Стерин И.С. Машиностроительные материалы Основы металловедения и термической обработки, 2003, 344 с.
5. Федорченко И.М. Свойства порошков металлов тугоплавких соединений и спеченных материалов издание 3, 1978, 184 с.

На главную