На главную

Решебник методичек Тарга С.М. 1988, 1989, 1983 и 1982 годов по теоретической механике для студентов-заочников.

Статья по теме: Вторичной рекристаллизации

Предметная область: материаловедение, композиционные материалы, металлы, стали, покрытия, деформации, обработка

Скачать полный текст

При вторичной рекристаллизации, протекающей при более высоких температурах (4.р —200° С) (см. рис. 7.8), продолжается изменение структуры, заключающееся в росте зерен до полных объемов кристаллов. В результате образуется крупнозернистая равновесная структура (рис. 7.9,6). При этом увеличение размеров зерен осуществляется вследствие постепенного присоединения атомов граничащих зерен к решетке растущего зерна, т. е. в результате диффузии. Скорость роста зерен при вторичной рекристаллизации замедляется. Весь рекристаллизационный процесс разупрочнения металла после нагар-товки нагревом до определенных температур называют р е к р и с-таллизационным отжигом.[3, С.85]

Наиболее вероятными движущими силами процесса вторичной рекристаллизации, которые позволяют объяснить формирование текстуры в трансформаторной стали, являются поверхностная и зернограничная энергии.[4, С.147]

Первая компонента текстуры—плоскость —. формируется в процессе вторичной рекристаллизации. Вторичная рекристаллизация протекает в стали, в которой полностью завершен процесс первичной рекристаллизации, т. е. имеется уже сравнительно равновесная структура. При нагреве такой стали выше 950° С начинается процесс избирательного роста зерен. Наибольшей скоростью роста обладают зерна, у которых с поверхностью листа совпадает плоскость (НО) (при образовании ребровой текстуры) или плоскость (100) (при образовании кубической текстуры). Такой процесс избирательного роста зерен приводит к образованию в листе трансформаторной стали соответствующей текстуры. Рост зерен с" определенной ориентировкой в процессе вторичной рекристаллизации осуществляется под действием поверхностной, граничной и объемной энергий. Под поверхностной энергией понимается различие между энергией и энтропией частиц, находящихся на свободной поверхности кристалла (по границе раздела металл— газ), и частиц, расположенных внутри кристалла. Так как по разным плоскостям ретикулярная плотность атомов различна, то поверхностная энергия может различаться на 30%. Следовательно, зерна, выходящие на поверхность листа трансформаторной стали различными гранями, могут иметь различную поверхностную энергию. Рост зерен, обладающих минимальной поверхностной энергией, является энергетически выгодным процессом. С учетом влияния поверхностной энергии, образование текстуры в 'листе трансформаторной стали может быть объяснено ростом зерен с минимальной поверхностной энергией.[4, С.145]

При вторичной рекристаллизации после высоких степеней предшествующей деформации нередко возникает текстура рекристаллизации. Характер текстуры рекристаллизации определяется видом предшествующей обработки давлением (прокатка, волочение и др.), условиями про-[9, С.132]

Влияние зернограничной энергии может сказываться на росте зерен при вторичной рекристаллизации в связи с тем, что poci крупных зерен за счет мелких является энергетически выгодным процессом, так как при этом уменьшается отношение поверхности кристалла к его Объему. Если предположить, что после первичной рекристаллизации самые крупные зерна имеют строго определенную ориентацию; то рост этих крупных зерен в процессе вторичной рекристаллизации должен привести к образованию текстуры. Влияние объемной энергии связано с тем, что разные кристаллиты могут иметь различную плотность дефектов. Энергетически более выгодным является состояние с минимальной плотностью дефектов, поэтому зерна с минимальной объемной энергией должны расти за счет зерен с большим значением этой энергии.[4, С.145]

Кубическую текстуру сумели получить также в тонких лентах с помощью вторичной рекристаллизации очень чистого кремнистого железа при отжиге в атмосфере с поверхностно-активными элементами (например серой и кислородом). Примером такой атмосферы является водород с примесью H2S в узком интервале концентраций серы (2...5)'1СГ4 %. Сера является поверхностно-активным элементом, снижающим наиболее сильно поверхностную энергию тех зерен, которые выходят на поверхность материала кристаллографической плоскостью (100). При этом в зависимости от исходной текстуры (до отжига) может быть получена как кубическая текстура, так и плоскостная кубическая текстура, в которой плоскость ленты совпадает с плоскостью (100), а направления легкого намагничивания [001] расположены в плоскости ленты случайно. В случае плоскостной кубической текстуры (100)[0vw] магнитные свойства изотропны в плоскости прокатки и легко намагничивается по любому направлению. Удельные потери в стали с плоскостной кубической текстурой меньше по сравнению с нетекстурованной изотропной сталью. Поэтому по уровню свойств материал с плоскостной кубической текстурой представляет интерес как динамная сталь. Однако получение кубической текстуры при вторичной рекристаллизации за счет регулирования поверхностной энергии нельзя признать экономичным, поскольку оно требует высокой чистоты металла и строгого контроля за составом атмосферы отжига, многократных холодных прокаток и высокотемпературных промежуточных отжигов.[14, С.544]

Зерна, растущие с большой скоростью, можно условно рассма тривать как зародышевые центры и поэтому процесс их роста получил название вторичной рекристаллизации. В результате вторичной рекристаллизации образуется множество мелких зерен и небольшое число очень крупных зерен. Вторичная рекристаллизация, вероятно, вызывается благоприятной для роста кристаллографической ориентировкой отдельных зерен, меньшей чем у других зерен концентрацией дефектов (величиной объемной энергии) и более высокой подвижностью границ в результате неравномерного выделения примесей. В большинстве случаев причиной вторичной рекристаллизации является торможение роста большинства зерен, образовавшихся при первичной рекристаллизации, дисперсными частицами примесей. Вторичная рекристаллизация, вызывающая образование крупного зерна и разнозернистости, способствует снижению механических свойств металлов.[2, С.57]

При вторичной рекристаллизации крупные зерна поглощают мелкие. По мере выравнивания размеров зерен скорость вторичной рекристаллизации уменьшается и процесс постепенно прекращается.[10, С.114]

По мере выравнивания размеров зерен и выправления их границ скорость вторичной рекристаллизации уменьшается и, наконец, процесс рекристаллизации прекращается.[11, С.72]

Зерна, растущие с большой скоростью, можно условно рассматривать как зародышевые центры, и поэтому процесс их роста получил название вторичной рекристаллизации. В результате вторичной рекристаллизации образуется множество мелких зерен и небольшое число очень крупных зерен. Вторичная рекристаллизация, вероятно, вызывается благоприятной для роста кристаллографической ориентацией отдельных зерен, меньшей чем у других зерен концентрацией дефектов (величиной объемной энергии) и более высокой подвижностью границ, в результате неравномерного выделения примесей. Вторичная рекристаллизация, вызывающая образование крупного зерна и разнозернистости, способствует снижению механических свойств металлов.[7, С.84]

Разупрочнение деформированного металла или сплава при нагреве является результатом процессов возврата, первичной и собирательной рекристаллизации, а в некоторых случаях н вторичной рекристаллизации [13, 14].[13, С.36]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



В ПОМОЩЬ ВСЕМ СТУДЕНТАМ!!!
Задачи по теоретической механике из сборников Яблонского, Мещерского, Тарга С.М., Кепе. Решение любых задач по материаловедению, термодинамике, метрологии, термеху, химии, высшей математике, строймеху, сопромату, электротехнике, ТОЭ, физике и другим предметам на заказ.

СПИСОК ЛИТЕРАТУРЫ

1. Гуляев А.П. Металловедение, 1978, 648 с.
2. Лахтин Ю.М. Металловедение и термическая обработка металлов, 1983, 360 с.
3. Лейкин А.Е. Материаловедение, 1971, 416 с.
4. Дубинин Г.Н. Конструкционные, проводниковые и магнитные материалы (электроматериаловедение), 1973, 296 с.
5. Сулима А.М. Качество поверхностного слоя и усталостная прочность деталей из жаропрочных и титановых сплавов, 1974, 256 с.
6. Колбасников Н.Г. Теория обработки металлов давлением, , 311 с.
7. Лахтин Ю.М. Материаловедение Учебник для высших технических учебных заведений, 1990, 528 с.
8. Симс Ч.Т. Суперсплавы II Жаропрочные материалы для аэрокосмических и промышленных энергоустановок Кн1, 1995, 384 с.
9. Ржевская С.В. Материаловедение Учебник, 2004, 422 с.
10. Антикайн П.А. Металловедение, 1965, 288 с.
11. Болховитинов Н.Ф. Металловедение и термическая обработка Издание 6, 1965, 505 с.
12. Гуляев А.П. Металловедение, 1978, 648 с.
13. Лашко С.В. Проектирование технологии пайки металлических изделий Справочник, 1983, 280 с.
14. Карабасов Ю.С. Новые материалы, 2002, 736 с.
15. Лахтин Ю.М. Металловедение и термическая обработка металлов, 1983, 360 с.
16. Арзамасов Б.Н. Материаловедение, 2002, 657 с.
17. Лахтин Ю.М. Металловедение и термическая обработка металлов, 1984, 360 с.
18. Малышев К.А. Фазовый наклеп аустенитных сплавов на железо-никелевой основе, 1982, 261 с.

На главную