На главную

Решебник методичек Тарга С.М. 1988, 1989, 1983 и 1982 годов по теоретической механике для студентов-заочников.

Статья по теме: Дендритной ликвацией

Предметная область: материаловедение, композиционные материалы, металлы, стали, покрытия, деформации, обработка

Скачать полный текст

Ликвация зональная и дендритная. Зональная ликвация — неоднородность в распределении элементов по зонам поковки или прутка. В поперечных микрошлифах ликвация заметна по различной травимости разных зон. Зональная ликвация сопровождается дендритной ликвацией, представляющей собой неоднородность в распределении элементов в пределах одного дендрита. Дендритная ликвация в изделиях определяет наличие полосчастости и волокнистости стали.[4, С.6]

В случае ускоренного охлаждения сплава при кристаллизации диффузионные процессы не успевают завершиться. В связи с этим центральная часть каждого зерна оказывается обогащенной более тугоплавким компонентом (в данном случае В), а периферийная — легкоплавким компонентом (А). Это явление называется дендритной ликвацией, снижающей прочностные и другие свойства сплавов. Ее предотвращение возможно за счет медленного охлаждения сплава, обеспечивающего его равновесную кристаллизацию.[7, С.66]

Особенно велика разница в свойствах стали в продольном и поперечном направлениях с возрастанием количества неметаллических включений. Увеличение количества включений в конструкционной углеродистой стали всего на один балл снижает поперечное сжатие на 10%. Анизотропия свойств кованой стали является следствием вытянутости неметаллических включений и структурной полосчатости, обусловленной дендритной ликвацией литой стали.[3, С.57]

В связи с уменьшением растворимости Ti и А1 в твердом ргй творе при понижении температуры в процессе технологическв термической обработки не удается полностью перевести сплав! стабильное состояние. Длительная эксплуатация при пониже* ных по сравнению с температурой отпуска температурах прив< дит к дополнительным выделениям у'-фазы. Эксплуатация njS температурах, превышающих температуру отпуска, вызыва* растворение некоторого количества дисперсной фазы. Нест бильность сплавов системы Ni—Сг—Ti—А1 при повышеннь температурах вызвана также дендритной ликвацией Ti и А1. Н пример, для кованого сплава ХН77ТЮ содержание титана междуосных участках в 2,5 раза больше его содержания в od дендритов. Дисперсность и количество у'-фазы после технолог ческой термической обработки определяют стабильность end BOB и характер временнбй зависимости пластичности; поэтом^ целях обеспечения высокой работоспособности материалов дз дисков и лопаток, работающих в разных условиях, выбор мар) сплава и режима термической обработки следует проводить учетом закономерностей нестабильности сплава в ходе эксплу) тации.[12, С.50]

Многие из указанных материалов и методов обработки применяются при изготовлении деталей, подвергающихся при эксплуатации периодическим нагревам. Чаще качество этих деталей оценивают по прочности связи слоев, отличающихся друг от друга составом, и по способности сопротивляться образованию трещин термической усталости. Однако с гетерогенизацией структуры и свойств в пределах поперечного сечения детали появляются условия для необратимого формоизменения. Ниже рассмотрены некоторые вопросы влияния химической макронеоднородности на размерную стабильность стали. Роль микроскопической неравномерности распределения компонентов сплава, обусловленной гетерофазной микроструктурой материала, дендритной ликвацией и др., обсуждалась ранее.[8, С.167]

Для исследования были выбраны литейные сплавы ЖС6У (как наиболее жаропрочный) и ВЖЛ12У (как самый пластичный из литых лопаточных материалов). Образцы были получены по технологии изготовления лопаток и подвергнуты контролю на рентгеновском дефектоскопе. Изучение рельефа деформации образцов и их механических свойств в вакууме проводили на установке ИМАШ-5С-65. Влияние воздушной среды и скоростного воздушного потока на свойства сплавов определяли на экспериментальной аэродинамической установке. Испытания на кратковременную прочность проводили при температуре 1000° С и скорости растяжения 0,15 мм/с, а на термостойкость по режиму: нагрев до 1100° С — 20 с, выдержка 10 с, охлаждение до 150° — 30 с. При этом на образец действовала постоянная нагрузка 10 кгс/мм2. Образцы исследовали в литом состоянии и после термической обработки по режимам, указанным в таблице. Исходная структура сплавов представляет собой твердый раствор с сильно выраженной дендритной ликвацией, в которой видны как крупные первичные выделения, представляющие эвтектику упрочняющей[2, С.153]

В процессе кристаллизации обычно образуются кристаллы твердого раствора дендритного типа, поэтому оси первого порядка, возникающие в начальный момент кристаллизации, обогащены более тугоплавким компонентом В. Периферийные слои кристалла и межосные пространства, кристаллизующиеся в последнюю очередь, будут обогащены компонентом А, понижающим температуру плавления сплава, и их состав близок к концентрации, соответствующей исходной концентрации сплава. Такую неоднородность состава сплава внутри отдельных кристаллов называют внутри-кристаллитной, или дендритной, ликвацией.Чем больше разность температур между солидусом и ликвидусом, тем больше дифференциация по составу между жидкой и твердой фазами и тем сильнее проявляется этот вид ликвации. Быстрое охлаждение способствует развитию дендритной ликвации. Вследствие разной травимости участков твердого раствора, имеющих неодинаковый состав,[5, С.55]

В процессе кристаллизации кристаллиты, выделяющиеся из жидкого раствора, имеют переменный состав, зависящий от температуры. Возникает неоднородность химического состава — ликвация. При этом неоднородность химического состава сплава внутри отдельных зерен называют внутрикристаллитной (или дендритной) ликвацией.[6, С.45]

В реальных условиях охлаждения состав кристаллов получается неоднородным. Это происходит потому, что скорость кристаллизации больше скорости диффузии и у кристаллов, образующихся при температуре выше (л, не успевает произойти диффузионное перераспределение компонентов. Внутренние участки кристалла обогащаются тугоплавким компонентом В, а наружные — компонентом А Такая неоднородность химического состава называется внутрикристолли-ческой, или дендритной, ликвацией. Ликвация чаще всего играет отрицательную роль, так как ухудшает технологические и механические свойства сплавов.[9, С.21]

исходная структура; условия термической обработки (температура нагрева, продолжительность, условия охлаждения — природа охлаждающей среды и скорость ее перемешивания), химическая микронеоднородность твердого раствора, определяемая дендритной ликвацией, внутренней адсорбцией в твердых растворах, характером взаимодействия растворенных атомов между собой, процессом образования и растворения карбидной фазы и присутствующими в сталях несовершенствами кристаллической решетки.[10, С.148]

пространства, кристаллизующиеся в последнюю очередь, будут обогащены компонентом А, понижающим температуру плавления сплава, и их состав близок к концентрации, соответствующей исходной концентрации сплава. Такую неоднородность состава сплава внутри отдельных кристаллов называют внутрикристаллитной или дендритной ликвацией. Чем больше разность температур между солидусом и ликвидусом, тем больше дифференциация по составу между жидкой и твердой фазами и тем сильнее проявляется этот вид ликвации. Вследствие разной травимости участков твердого раствора, имеющих неодинаковый состав, неоднородность внутри каждого кристалла может быть легко выявлена при микроанализе (см. рис. 58, а).[11, С.94]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



В ПОМОЩЬ ВСЕМ СТУДЕНТАМ!!!
Задачи по теоретической механике из сборников Яблонского, Мещерского, Тарга С.М., Кепе. Решение любых задач по материаловедению, термодинамике, метрологии, термеху, химии, высшей математике, строймеху, сопромату, электротехнике, ТОЭ, физике и другим предметам на заказ.

СПИСОК ЛИТЕРАТУРЫ

1. Лахтин Ю.М. Металловедение и термическая обработка металлов, 1983, 360 с.
2. Лозинский М.Г. Практика тепловой микроскопии, 1976, 168 с.
3. Кудрявцев И.В. Материалы в машиностроении Выбор и применение Том 2, 1968, 498 с.
4. Раскатов В.М. Машиностроительные материалы Краткий справочник Изд.2, 1969, 352 с.
5. Лахтин Ю.М. Материаловедение Учебник для высших технических учебных заведений, 1990, 528 с.
6. Ржевская С.В. Материаловедение Учебник, 2004, 422 с.
7. Фетисов Г.П. Материаловедение и технология металлов, 2001, 640 с.
8. Баранов А.А. Фазовые превращения и термо-циклирование металлов, 1974, 232 с.
9. Комаров О.С. Технология конструкционных материалов, 2005, 560 с.
10. Качанов Н.Н. Прокаливаемость стали, 1978, 192 с.
11. Лахтин Ю.М. Металловедение и термическая обработка металлов, 1983, 360 с.
12. Гохфельд Д.А. Механические свойства сталей и сплавов при нестационарном нагружении, 1996, 408 с.
13. Григорович В.К. Дисперсионное упрочнение тугоплавких металлов, 1980, 305 с.
14. Лахтин Ю.М. Металловедение и термическая обработка металлов, 1984, 360 с.

На главную